Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 157
1.
Biomater Sci ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38712883

Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).

2.
Sci Rep ; 14(1): 9440, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658799

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Melanins , Pteridines , Ribosomal Protein S6 Kinases, 90-kDa , Signal Transduction , alpha-MSH , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Melanins/biosynthesis , Melanins/metabolism , Animals , alpha-MSH/metabolism , alpha-MSH/pharmacology , Mice , Cell Line, Tumor , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Ultraviolet Rays , Morpholines/pharmacology , Chromones/pharmacology , Nitriles/pharmacology , Butadienes/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Melanoma, Experimental/metabolism , Melanogenesis
3.
Cell Death Dis ; 15(4): 274, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632244

Accumulating evidence demonstrates that the activity regulation of ELK3, a member of the E26 transformation-specific oncogene family, is critical to regulating cell proliferation, migration, and survival in human cancers. However, the molecular mechanisms of how ELK3 induces chemoresistance in prostate cancer (PCa) have not been elucidated. In this study, we found that SPOP and ELK3 are an interacting partner. The interaction between SPOP and ELK3 resulted in increased ELK3 ubiquitination and destruction, assisted by checkpoint kinase-mediated ELK3 phosphorylation. Notably, the modulation of SPOP-mediated ELK3 protein stability affected the c-Fos-induced cell proliferation and invasion of PCa cells. The clinical involvement of the SPOP-ELK3 axis in PCa development was confirmed by an immunohistochemical assay on 123 PCa tissues, with an inverse correlation between increased ELK3 and decreased SPOP being present in ~80% of the specimens. This observation was supported by immunohistochemistry analysis using a SPOP-mutant PCa specimen. Finally, docetaxel treatment induced cell death by activating checkpoint kinase- and SPOP-mediated ELK3 degradation, while SPOP-depleted or SPOP-mutated PCa cells showed cell death resistance. Notably, this observation was correlated with the protein levels of ELK3. Taken together, our study reveals the precise mechanism of SPOP-mediated degradation of ELK3 and provides evidence that SPOP mutations contribute to docetaxel resistance in PCa.


Prostatic Neoplasms , Proto-Oncogene Proteins c-ets , Humans , Male , Docetaxel/pharmacology , Docetaxel/therapeutic use , Mutation , Nuclear Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Ubiquitination , Proto-Oncogene Proteins c-ets/metabolism , Drug Resistance, Neoplasm/genetics
4.
Macromol Biosci ; : e2300590, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38488862

Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.

5.
Mar Drugs ; 22(3)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38535468

The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated ß-galactosidase (SA-ß-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.


Corydalis , Humans , Autophagy , Skin , Aging , Plant Extracts , Ubiquitin-Protein Ligases
6.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Article En | MEDLINE | ID: mdl-38480902

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Cyclic AMP Response Element-Binding Protein , Nuclear Envelope , Proteomics , Apoptosis , DNA , Nuclear Envelope/metabolism , Humans , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism
7.
Proc Natl Acad Sci U S A ; 121(14): e2318039121, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38536750

Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.


Autophagy , Melanosomes , Melanosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Xanthones , Melanoma, Experimental , Animals , Mice
8.
Toxicol Res ; 40(1): 125-137, 2024 Jan.
Article En | MEDLINE | ID: mdl-38223669

Fargesin, a bioactive lignan derived from Flos Magnoliae, possesses anti-inflammatory, anti-oxidative, anti-melanogenic, and anti-apoptotic effects. This study compared the metabolic profiles of fargesin in human, dog, monkey, mouse, and rat hepatocytes using liquid chromatography-high resolution mass spectrometry. In addition, we investigated the human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for fargesin metabolism. The hepatic extraction ratio of fargesin among the five species ranged from 0.59 to 0.78, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. During metabolism, fargesin generates three phase 1 metabolites, including fargesin catechol (M1) and O-desmethylfargesin (M2 and M3), and 11 phase 2 metabolites, including O-methyl-M1 (M4 and M5) via catechol O-methyltransferase (COMT), glucuronides of M1, M2, M4, and M5, and sulfates of M1-M5. The production of M1 from fargesin via O-demethylenation is catalyzed by CYP2C9, CYP3A4, CYP2C19, and CYP2C8 enzymes, whereas the formation of M2 and M3 (O-desmethylfargesin) is catalyzed by CYP2C9, CYP2B6, CYP2C19, CYP3A4, CYP1A2, and CYP2D6 enzymes. M4 is metabolized to M4 glucuronide by UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17 enzymes, whereas M4 sulfate is generated by multiple SULT enzymes. Fargesin is extensively metabolized in human hepatocytes by CYP, COMT, UGT, and SULT enzymes. These findings help to elucidate the pharmacokinetics and drug interactions of fargesin.

9.
Arch Pharm Res ; 47(2): 111-126, 2024 Feb.
Article En | MEDLINE | ID: mdl-38182943

Aschantin, a tetrahydrofurofuran lignan with a 1,3-benzodioxole group derived from Flos Magnoliae, exhibits antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. This study compared the metabolic profiles of aschantin in human, dog, mouse, and rat hepatocytes using liquid chromatography-high-resolution mass spectrometry. The hepatic extraction ratio of aschantin among the four species was 0.46-0.77, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. Hepatocyte incubation of aschantin produced 4 phase 1 metabolites, including aschantin catechol (M1), O-desmethylaschantin (M2 and M3), and hydroxyaschantin (M4), and 14 phase 2 metabolites, including O-methyl-M1 (M5 and M6) via catechol O-methyltransferase (COMT), six glucuronides of M1, M2, M3, M5, and M6, and six sulfates of M1, M2, M3, M5, and M6. Enzyme kinetic studies using aschantin revealed that the production of M1, a major metabolite, via O-demethylenation is catalyzed by cytochrome 2C8 (CYP2C8), CYP2C9, CYP2C19, CYP3A4, and CYP3A5 enzymes; the formation of M2 (O-desmethylaschantin) is catalyzed by CYP2C9 and CYP2C19; and the formation of M4 is catalyzed by CYP3A4 enzyme. Two glutathione (GSH) conjugates of M1 were identified after incubation of aschantin with human and animal liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and GSH, but they were not detected in the hepatocytes of all species. In conclusion, aschantin is extensively metabolized, producing 18 metabolites in human and animal hepatocytes catalyzed by CYP, COMT, UDP-glucuronosyltransferase, and sulfotransferase. These results can help in clarifying the involvement of metabolizing enzymes in the pharmacokinetics and drug interactions of aschantin and in elucidating GSH conjugation associated with the reactive intermediate formed from M1 (aschantin catechol).


Benzodioxoles , Cytochrome P-450 CYP3A , Lignans , Humans , Rats , Mice , Animals , Dogs , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 CYP2C19/metabolism , Kinetics , Cytochrome P-450 CYP2C9/metabolism , Hepatocytes/metabolism , Microsomes, Liver/metabolism , Catechols
10.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article En | MEDLINE | ID: mdl-37895175

The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.


Membrane Proteins , Nuclear Envelope , Nuclear Envelope/metabolism , Membrane Proteins/metabolism , Nuclear Proteins/genetics , Cytoplasm/metabolism , Transcription Factors/metabolism , Cell Nucleus/metabolism
11.
Food Chem Toxicol ; 179: 113994, 2023 Sep.
Article En | MEDLINE | ID: mdl-37598851

Phalloidin, a bicyclic heptapeptide found in Amanita mushroom, specifically binds to F-actin in the liver causing cholestatic hepatotoxicity. However, the toxicokinetics and tissue distribution properties of phalloidin as well as their underlying mechanisms have to be studied further. The area under the plasma concentration curve (AUC) of phalloidin increased in proportion to the doses (0.2, 0.4, and 0.8 mg/kg for intravenous injection and 2, 5, and 10 mg/kg for oral administration). Phalloidin exhibited dose-independent low volume of distribution (395.6-456.9 mL/kg) and clearance (21.4-25.5 mL/min/kg) and low oral bioavailability (2.4%-3.3%). This could be supported with its low absorptive permeability (0.23 ± 0.05 × 10-6 cm/s) in Caco-2 cells. The tissue-to-plasma AUC ratios of intravenously injected and orally administered phalloidin were the highest in the liver and intestines, respectively, and also high in the kidneys, suggesting that the liver, kidneys, and intestines could be susceptible to phalloidin exposure and that active transport via the hepatic and renal organic anion transporters (OATP1B1, OATP1B3, and OAT3) may contribute to the higher distribution of phalloidin in the liver and kidneys.


Amanita , Animals , Mice , Humans , Toxicokinetics , Caco-2 Cells , Phalloidine , Tissue Distribution
12.
J Antibiot (Tokyo) ; 76(10): 585-591, 2023 10.
Article En | MEDLINE | ID: mdl-37414938

The pluramycin family of antibiotics comprises angucycline compounds derived from actinomycetes that possess anticancer and antibacterial properties. Pluramycins are structurally characterized by two aminoglycosides linked by a carbon-carbon bond next to the γ-pyrone angucycline backbone. Kidamycins (3, 4) and rubiflavins (6-9) were screened through liquid chromatography-mass spectrometry analysis of the crude extracts of Streptomyces sp. W2061, which was cultured in complex media under phosphate-limiting conditions. Newly isolated rubiflavin G (7) and photoactivated compounds (8, 9) were characterized using exhaustive 1D and 2D nuclear magnetic resonance analysis. The cytotoxicity of kidamycin (3), photokidamycin (4), and photorubiflavin G (8) was determined using two human breast cancer cell lines-MCF7 and MDA-MB-231. Compared to MCF7 cells, MDA-MB-231 cells were more sensitive to the active compounds, and photokidamycin (4) considerably inhibited MCF7 and MDA-MB-231 cell growth (IC50 = 3.51 and 0.66 µM, respectively).


Antineoplastic Agents , Breast Neoplasms , Streptomyces , Humans , Female , Streptomyces/chemistry , Breast Neoplasms/drug therapy , Aminoglycosides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Carbon , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
13.
Arch Pharm Res ; 46(6): 500-534, 2023 Jun.
Article En | MEDLINE | ID: mdl-37354378

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) is a DNA sensor that elicits a robust type I interferon response by recognizing ubiquitous danger-associated molecules. The cGAS/stimulator of interferon genes (cGAS/STING) is activated by endogenous DNA, including DNA released from mitochondria and extranuclear chromatin, as well as exogenous DNA derived from pathogenic microorganisms. cGAS/STING is positioned as a key axis of autoimmunity, the inflammatory response, and cancer progression, suggesting that the cGAS/STING signaling pathway represents an efficient therapeutic target. Based on the accumulated evidence, we present insights into the prevention and treatment of cGAS/STING-related chronic immune and inflammatory diseases. This review presents the current state of clinical and nonclinical development of modulators targeting cGAS/STING, providing useful information on the design of therapeutic strategies.


Interferon Type I , Neoplasms , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA , Interferon Type I/genetics , Interferon Type I/metabolism , Signal Transduction/physiology , Neoplasms/drug therapy , Neoplasms/genetics , Immunity, Innate
14.
J Ginseng Res ; 47(2): 337-346, 2023 Mar.
Article En | MEDLINE | ID: mdl-36926607

Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated ß-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased ß-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-Ⅰ to LC3-Ⅱ and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

15.
Biomed Pharmacother ; 162: 114558, 2023 Jun.
Article En | MEDLINE | ID: mdl-36966666

Regnase-1 is an endoribonuclease that regulates the stability of target genes. Here, we investigated whether Regnase-1 plays a regulatory role in the pathophysiology of atopic dermatitis, a chronic inflammatory skin disease. Regnase-1 levels were decreased in skin and serum of atopic dermatitis patients and mice. Regnase-1+/- mice exhibited more severe atopic dermatitis symptoms than wild-type mice in a house dust mite allergen-induced atopic dermatitis model. Regnase-1 deficiency led to the global changes in gene expression related with innate immune and inflammatory responses, in particular chemokines. The skin Regnase-1 level had an inverse relationship with chemokine expression when we analyzed samples of atopic dermatitis patients and Regnase-1-deficient mice, suggesting that potentiated chemokine production contributes to the augmented inflammation at lesion sites. Subcutaneous administration of recombinant Regnase-1 to mice significantly ameliorated atopic dermatitis-like skin inflammation with reduced chemokine production in a house dust mite-induced atopic dermatitis NC/Nga mouse model. These results indicate that Regnase-1 plays an essential role in maintaining skin immune homeostasis as a regulator of chemokine expression. Modulating Regnase-1 activity may be an efficient therapeutic strategy for treating chronic inflammatory diseases, including atopic dermatitis.


Dermatitis, Atopic , Animals , Mice , Chemokines , Dermatitis, Atopic/drug therapy , Disease Models, Animal , Immunoglobulin E , Inflammation/pathology , Skin/metabolism
16.
Biomol Ther (Seoul) ; 31(2): 168-175, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36779240

Tramadol is an opioid analog used to treat chronic and acute pain. Intradermal injections of tramadol at hundreds of millimoles have been shown to produce a local anesthetic effect. We used the whole-cell patch-clamp technique in this study to investigate whether tramadol blocks the sodium current in HEK293 cells, which stably express the pain threshold sodium channel Nav1.7 or the cardiac sodium channel Nav1.5. The half-maximal inhibitory concentration of tramadol was 0.73 mM for Nav1.7 and 0.43 mM for Nav1.5 at a holding potential of -100 mV. The blocking effects of tramadol were completely reversible. Tramadol shifted the steady-state inactivation curves of Nav1.7 and Nav1.5 toward hyperpolarization. Tramadol also slowed the recovery rate from the inactivation of Nav1.7 and Nav1.5 and induced stronger use-dependent inhibition. Because the mean plasma concentration of tramadol upon oral administration is lower than its mean blocking concentration of sodium channels in this study, it is unlikely that tramadol in plasma will have an analgesic effect by blocking Nav1.7 or show cardiotoxicity by blocking Nav1.5. However, tramadol could act as a local anesthetic when used at a concentration of several hundred millimoles by intradermal injection and as an antiarrhythmic when injected intravenously at a similar dose, as does lidocaine.

17.
Arch Pharm Res ; 46(1): 44-58, 2023 Jan.
Article En | MEDLINE | ID: mdl-36607545

E2F 1, 2, and 3a, (refer to as E2Fs) are a subfamily of E2F transcription factor family that play essential roles in cell-cycle progression, DNA replication, DNA repair, apoptosis, and differentiation. Although the transcriptional regulation of E2Fs has focused on pocket protein retinoblastoma protein complex, recent studies indicate that post-translational modification and stability regulation of E2Fs play key roles in diverse cellular processes. In this study, we found that FBXO1, a component of S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) complex, is an E2Fs binding partner. Furthermore, FBXO1 to E2Fs binding induced K48 ubiquitination and subsequent proteasomal degradation of E2Fs. Binding domain analysis indicated that the Arg (R)/Ile (I) and R/Val (V) motifs, which are located in the dimerization domain of E2Fs, of E2F 1 and 3a and E2F2, respectively, acted as degron motifs (DMs) for FBXO1. Notably, RI/AA or RV/AA mutation in the DMs reduced FBXO1-mediated ubiquitination and prolonged the half-lives of E2Fs. Importantly, the stabilities of E2Fs were affected by phosphorylation of threonine residues located near RI and RV residues of DMs. Phosphorylation prediction database analysis and specific inhibitor analysis revealed that MEK/ERK signaling molecules play key roles in FBXO1/E2Fs' interaction and modulate E2F protein turnover. Moreover, both elevated E2Fs protein levels by knockdown of FBXO1 and decreased E2Fs protein levels by sh-E2F3a delayed G1/S cell cycle transition, resulting in inhibition of cancer cell proliferation. These results demonstrated that FBXO1-E2Fs axis-mediated precise E2Fs stability regulation plays a key role in cell proliferation via G1/S cell cycle transition.


Mitogen-Activated Protein Kinase Kinases , Neoplasms , E2F Transcription Factors/metabolism , Cell Cycle , Cell Proliferation , Cell Cycle Proteins
18.
Biochem Biophys Res Commun ; 642: 66-74, 2023 01 29.
Article En | MEDLINE | ID: mdl-36566564

p90 Ribosomal S6 kinase 2 (RSK2), a member of mitogen-activated protein kinase regulating cell proliferation and transformation induced by tumor promoters, such as epidermal growth factor, plays a vital role as a signaling hub to modulate cell proliferation, transformation, cell cycle transition, and chromatin remodeling by tumor promoter stimulation such as epidermal growth factor. On the other hand, the RSK2-mediated signaling networks that regulate cancer cell proliferation are unclear. In this study, SKOV3, an ovarian cancer cell that exhibits chemoresistant properties, and TOV-112D cells showed different sensitivities to colony growth in soft agar. Based on the protein profile shown in a previous report, RSK2 knockdown preferentially and significantly suppressed cell proliferation and colony growth. Moreover, RSK2 interacted with AKTs (AKT 1-3) via the N-terminal kinase domain (NTKD) of RSK2, resulting in the phosphorylation of RSK2. The AKT-mediated phosphorylation consensus sequence, RxRxxS/T, on RSK2 NTKD (Thr115) was well conserved in different species. In particular, an in vitro kinase assay showed that NTKD deleted and Thr115Ala mutants of RSK2 abolished AKT1-mediated phosphorylation. In the physiological assay of RSK2 phosphorylation at Thr115 on cell proliferation, AKT1-mediated RSK2 phosphorylation at Thr115 played an essential role in cell proliferation. The re-introduction of RSK2-T115A to RSK2-/- MEF attenuated the EGF-induced G1/S cell cycle transition compared to RSK2-wt introducing RSK2-/- MEFs. This attenuation was observed by EGF stimulations and insulin-like growth factor-1. Overall, these results show that novel wiring of the AKT/RSKs signaling axis plays an important role in cancer cell proliferation by modulating the G1/S cell cycle transition.


Epidermal Growth Factor , Ovarian Neoplasms , Female , Humans , Epidermal Growth Factor/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Cell Proliferation , Signal Transduction , Phosphorylation , Cell Cycle , Carcinogens
19.
Photochem Photobiol ; 99(2): 344-355, 2023 03.
Article En | MEDLINE | ID: mdl-36029171

Sunlight exposure is a significant risk factor for UV-induced deteriorating transformations of epidermal homeostasis leading to skin carcinogenesis. The ability of UVB radiation to cause melanoma, as well as basal and squamous cell carcinomas, makes UVB the most harmful among the three known UV ranges. UVB-induced DNA mutations and dysregulation of signaling pathways contribute to skin cancer formation. Among various signaling pathways modulated by UVB, tyrosine phosphorylation signaling which is mediated by the action of protein tyrosine kinases (PTKs) on specific tyrosine residues is highly implicated in photocarcinogenesis. Following UVB irradiation, PTKs get activated and their downstream signaling pathways contribute to photocarcinogenesis by promoting the survival of damaged keratinocytes and increasing cell proliferation. While UVB activates oncogenic signaling pathways, it can also activate tumor suppressive signaling pathways as initial protective mechanisms to maintain epidermal homeostasis. Tyrosine dephosphorylation is one of the protective mechanisms and is mediated by the action of protein tyrosine phosphatases (PTPs). PTP can counteract UVB-mediated PTK activation and downregulate oncogenic signaling pathways. However, PTPs have not been studied extensively in photocarcinogenesis with previous studies regarding their inactivation induced by UVB. This current review will summarize the recent progress in the protective function of PTPs in epidermal photocarcinogenesis.


Skin Neoplasms , Ultraviolet Rays , Humans , Phosphorylation , Keratinocytes/radiation effects , Protein Tyrosine Phosphatases/metabolism , Carcinogenesis , Skin Neoplasms/etiology , Skin Neoplasms/metabolism , Tyrosine/metabolism
20.
Biomol Ther (Seoul) ; 31(1): 40-47, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36111592

Activation of the NLRP3 inflammasome is a necessary process to induce fibrosis in nonalcoholic fatty liver disease (NAFLD). Nonalcoholic steatohepatitis (NASH) is a kind of NAFLD that encompasses the spectrum of liver disease. It is characterized by inflammation and ballooning of hepatocytes during steatosis. We tested whether inhibiting the NLRP3 inflammasome could prevent the development and pathology of NASH. We identified loganin as an inhibitor of the NLRP3 inflammasome and investigated whether in vivo administration of loganin prevented NASH symptoms using a methionine-choline deficient (MCD) diet model in mice. We found that loganin inhibited the NLRP3 inflammasome activation triggered by ATP or nigericin, as shown by suppression of the production of interleukin (IL)-1ß and caspase-1 (p10) in mouse primary macrophages. The speck formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) was blocked by loganin, showing that the assembly of the NLRP3 inflammasome complex was impaired by loganin. Administration of loganin reduced the clinical signs of NASH in mice fed the MCD diet, including hepatic inflammation, fat accumulation, and fibrosis. In addition, loganin reduced the expression of NLRP3 inflammasome components in the liver. Our findings indicate that loganin alleviates the inflammatory symptoms associated with NASH, presumably by inhibiting NLRP3 inflammasome activation. In summary, these findings imply that loganin may be a novel nutritional and therapeutic treatment for NASH-related inflammation.

...